The Open-source SPL Boosts MongoDB Computing Ability
MongoDB is a typical NoSQL database. Its document-oriented structure makes both storage and access convenient and efficient. But the database has rather weak computing ability. Computations on MongoDB data, particularly complex ones, are hard to handle. A data computing engine having powerful computing capability is needed to work with MongoDB to achieve relevant computing tasks.
The open-source esProc SPL is a specialized structured data computation engine. It supplies rich class libraries and all-around, database-independent computational capabilities. SPL has an independent procedural syntax that is particularly good at handling complex computations. It can help MongoDB increase its ability to compute, accomplish grouping & aggregation, joins, subqueries, and all the other computing tasks effortlessly.
Regular queries
It is easy to achieve JOINs MongoDB finds it difficult to handle in SPL:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://127.0.0.1:27017/raqdb")  |  
   /Connect to MongDB  |  
  
2  |  
   =mongo_shell(A1,"c1.find()").fetch()  |  
   /Fetch data from MongoDB  |  
  
3  |  
   =mongo_shell(A1,"c2.find()").fetch()  |  
   |
4  |  
   =A2.join(user1:user2,A3:user1:user2,output)  |  
   /Perform join  |  
  
5  |  
   >A1.close()  |  
   /Close connection to MongoDB  |  
  
SPL can reuse the result of handling data of a table that is repeatedly involved in computations:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://127.0.0.1:27017/raqdb")  |  
   |
2  |  
   =mongo_shell(A1,“course.find(,{_id:0})”).fetch()  |  
   /Fetch data from MongoDB  |  
  
3  |  
   =A2.group(Sno).((avg = ~.avg(Grade), ~.select(Grade>avg))).conj()  |  
   /Get documents where grading level is above average  |  
  
4  |  
   >A1.close()  |  
   
Perform IN conditional query in SPL:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/test")  |  
   |
2  |  
   =mongo_shell(A1,"orders.find(,{_id:0})")  |  
   /Fetch data from MongoDB  |  
  
3  |  
   =mongo_shell(A1,"employee.find({STATE:'California'},{_id:0})").fetch()  |  
   /Select certain employee documents  |  
  
4  |  
   =A3.(EID).sort()  |  
   /Get EID field and sort it  |  
  
5  |  
   =A2.select(A4.pos@b(SELLERID)).fetch()  |  
   /Perform binary search  |  
  
6  |  
   >A1.close()  |  
   
SPL’s technique to turn foreign key values to objects – the object-referencing foreign key – creates efficient foreign key pointers:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/local")  |  
   |
2  |  
   =mongo_shell(A1,"Progress.find({}, {_id:0})").fetch()  |  
   /Fetch Progress data  |  
  
3  |  
   =A2.groups(courseid; count(userId):popularityCount)  |  
   /Group and count by course  |  
  
4  |  
   =mongo_shell(A1,"Course.find(,{title:1})").fetch()  |  
   /Get Course data  |  
  
5  |  
   =A3.switch(courseid,A4:_id)  |  
   /Foreign-key-based join  |  
  
6  |  
   =A5.new(popularityCount,courseid.title)  |  
   /Create result set  |  
  
7  |  
   =A1.close()  |  
   
SPL achieves APPLY algorithm in a simple way:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://127.0.0.1:27017/raqdb")  |  
   |
2  |  
   =mongo_shell(A1,"users.find()").fetch()  |  
   /Fetch users data  |  
  
3  |  
   =mongo_shell(A1,"workouts.find()").fetch()  |  
   /Fetch workouts data  |  
  
4  |  
   =A2.conj(A3.select(A2.workouts.pos(_id)).derive(A2.name))  |  
   /Get matching _id values from the sequence of workouts documents  |  
  
5  |  
   >A1.close()  |  
   
SPL’s way of performing set-oriented calculations – intersection, union, difference and concatenation:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://127.0.0.1:27017/raqdb")  |  
   |
2  |  
   =mongo_shell(A1,"emp1.find()").fetch()  |  
   |
3  |  
   =mongo_shell(A1,"emp2.find()").fetch()  |  
   |
4  |  
   =[A2,A3].conj()  |  
   /Concatenation of sequences  |  
  
5  |  
   =[A2,A3].merge@ou()  |  
   /Union by whole row comparison  |  
  
6  |  
   =[A2,A3].merge@ou(_id, NAME)  |  
   /Union by key value comparison  |  
  
7  |  
   =[A2,A3].merge@oi()  |  
   /Intersection by whole row comparison  |  
  
8  |  
   =[A2,A3].merge@oi(_id, NAME)  |  
   /Intersection by key value comparison  |  
  
9  |  
   =[A2,A3].merge@od()  |  
   /Difference by whole row comparison  |  
  
10  |  
   =[A2,A3].merge@od(_id, NAME)  |  
   /Difference by key value comparison  |  
  
11  |  
   >A1.close()  |  
   
Get sequence number of a member in a sequence in SPL:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/local)  |  
   |
2  |  
   =mongo_shell(A1,"users.find({name:'jim'},{name:1,friends:1,_id:0})").fetch()  |  
   |
3  |  
   =A2.friends.pos("luke")  |  
   /Get sequence numbers of members in sequence friends  |  
  
4  |  
   =A1.close()  |  
   
Perform intersection of multi-member collections in SPL:
A  |  
   B  |  
  |
1  |  
   [Chemical, Biology, Math]  |  
   /Courses  |  
  
2  |  
   =mongo_open("mongodb://127.0.0.1:27017/raqdb")  |  
   |
3  |  
   =mongo_shell(A2,"student.find()").fetch()  |  
   /Fetch student data  |  
  
4  |  
   =A3.select(Lesson^A1!=[])  |  
   /Get documents where at least one course is selected  |  
  
5  |  
   =A4.new(_id, Name, ~.Lesson^A1:Lession)  |  
   /Get the final result  |  
  
6  |  
   >A2.close()  |  
   
Complex queries
Getting TopN in SPL:
A  |  
   B  |  
   ||
1  |  
   =mongo_open("mongodb://127.0.0.1:27017/test")  |  
   ||
2  |  
   =mongo_shell(A1,"last3.find(,{_id:0};{variable:1})")  |  
   /Get last3 data and sort it by variable  |  
   |
3  |  
   for A2;variable  |  
   =A3.top(3;-timestamp)  |  
   /Get the three documents having the latest timestamps  |  
  
4  |  
   =@|B3  |  
   /Append the selected documents to B4  |  
  |
5  |  
   =B4.minp(~.timestamp)  |  
   / Get documents with earliest timestamp  |  
   |
6  |  
   >mongo_close(A1)  |  
   
Summarize a nested-structure collection in SPL:
A  |  
  |
1  |  
   =mongo_open("mongodb://127.0.0.1:27017/raqdb")  |  
  
2  |  
   =mongo_shell(A1,"computer.find()").fetch()  |  
  
3  |  
   =A2.new(_id:ID,income.array().sum():INCOME,output.array().sum():OUTPUT)  |  
  
4  |  
   >A1.close()  |  
  
Combine subdocuments made up of multiple attributes in SPL:
A  |  
   B  |  
   C  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/local")  |  
   ||
2  |  
   =mongo_shell(A1,"c1.find(,{_id:0};{name:1})")  |  
   ||
3  |  
   =create(_id, readUsers)  |  
   /Create result table sequence  |  
  |
4  |  
   for A2;name  |  
   =A4.conj(acls.read.users|acls.append.users|acls.edit.users|acls.fullControl.users).id()  |  
   /Get all users fields  |  
  
5  |  
   >A3.insert(0, A4.name, B4)  |  
   /Insert the current group of data to the result set  |  
  |
6  |  
   =A1.close()  |  
   
Query nested List subdocument in SPL:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/local")  |  
   |
2  |  
   =mongo_shell(A1,"Cbettwen.find(,{_id:0})").fetch()  |  
   |
3  |  
   =A2.conj((t=~.objList.data.dataList,t.select((s=float(~.split@c1()(1)), s>6154 && s<=6155))))  |  
   / Get eligible strings  |  
  
4  |  
   =A1.close()  |  
   
SPL Cross-sector aggregation:
A  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/local")  |  
  
2  |  
   =mongo_shell(A1,"student.find()").fetch()  |  
  
3  |  
   =A2.group(school)  |  
  
4  |  
   =A3.new(school:school,~.align@a(5,sub1).(~.len()):sub1,~.align@a(5,sub2).(~.len()):sub2)  |  
  
5  |  
   =A4.new(school,sub1(5):sub1-5,sub1(4):sub1-4,sub1(3):sub1-3,sub1(2):sub1-2,sub1(1):sub1-1,sub2(5):sub2-5,sub2(4):sub2-4,sub2(3):sub2-3,sub2(2):sub2-2,sub2(1):sub2-1)  |  
  
6  |  
   =A1.close()  |  
  
SPL segment-based grouping:
A  |  
   B  |  
  |
1  |  
   [3000,5000,7500,10000,15000]  |  
   /Intervals of Sales for segmentation  |  
  
2  |  
   =mongo_open("mongodb://127.0.0.1:27017/raqdb")  |  
   |
3  |  
   =mongo_shell(A2,"sales.find()").fetch()  |  
   |
4  |  
   =A3.groups(A1.pseg(~.SALES):Segment;count(1): number)  |  
   /Group data and count employees by SALES intervals  |  
  
5  |  
   >A2.close()  |  
   
SPL class-based grouping:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://127.0.0.1:27017/raqdb")  |  
   |
2  |  
   =mongo_shell(A1,"books.find()")  |  
   |
3  |  
   =A2.groups(addr,book;count(book):Count)  |  
   / Grouping & count  |  
  
4  |  
   =A3.groups(addr;sum(Count):Total)  |  
   / Grouping & sum  |  
  
5  |  
   =A3.join(addr,A4:addr,Total)  |  
   / Join operation  |  
  
6  |  
   >A1.close()  |  
   
Data writing
Export data as CSV in SPL:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/raqdb")  |  
   |
2  |  
   =mongo_shell(A1,"carInfo.find(,{_id:0})")  |  
   |
3  |  
   =A2.conj((t=~,cars.car.new(t.id:id,t.cars.name, ~:car)))  |  
   /Split each car field value into multiple rows  |  
  
4  |  
   =file("D:\\data.csv").export@tc(A3)  |  
   /Export as csv  |  
  
5  |  
   >A1.close()  |  
   
SPL database update (from MongoDB to MySQL):
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/raqdb")  |  
   /Connect to MongDB  |  
  
2  |  
   =mongo_shell(A1,"course.find(,{_id:0})").fetch()  |  
   |
3  |  
   =connect("myDB1")  |  
   /Connect to mysql  |  
  
4  |  
   =A3.query@x("select * from course2").keys(Sno, Cno)  |  
   |
5  |  
   >A3.update(A2:A4,course2,Sno,Cno, Grade; Sno,Cno)  |  
   /Update data into mysql  |  
  
6  |  
   >A1.close()  |  
   
SPL database update (from MySQL to MongoDB):
A  |  
   B  |  
  |
1  |  
   =connect("mysql")  |  
   /Connect to mysql  |  
  
2  |  
   =A1.query@x("select * from course2")  |  
   /Get data of course2 table  |  
  
3  |  
   =mongo_open("mongodb://localhost:27017/raqdb")  |  
   /Connect to MongDB  |  
  
4  |  
   =mongo_insert(A3, "course",A2)  |  
   /Insert records of MySQL table course2 into the MongoDB collection  |  
  
5  |  
   >A3.close()  |  
   
Mixed computations
SPL enables convenient mixed computation between MongoDB and another data source:
A  |  
   B  |  
  |
1  |  
   =mongo_open("mongodb://localhost:27017/test")  |  
   /Connect to MongDB  |  
  
2  |  
   =mongo_shell(A1,"emp.find({'$and':[{'Birthday':{'$gte':'"+string(begin)+"'}},{'Birthday':{'$lte':'"+string(end)+"'}}]},{_id:0})").fetch()  |  
   /Get records within a specified time interval  |  
  
3  |  
   =A1.close()  |  
   / Close MongoDB connection  |  
  
4  |  
   =myDB1.query("select * from cities")  |  
   / Get data of cities table in mysql  |  
  
5  |  
   =A2.switch(CityID,A4:CityID)  |  
   / Foreign-key-based join  |  
  
6  |  
   =A5.new(EID,Dept,CityID.CityName:CityName,Name,Gender)  |  
   / Create result set  |  
  
7  |  
   return A6  |  
   / Return the result set  |  
  
SQL support
Besides the native syntax, SPL offers support of SQL92 standard. You can use SQL to query MongoDB. To achieve the above join operation, for instance:
A  |  
  |
1  |  
   =mongo_open("mongodb://127.0.0.1:27017/test")  |  
  
2  |  
   =mongo_shell(A1,"c1.find()").fetch()  |  
  
3  |  
   =mongo_shell@x(A1,"c2.find()").fetch()  |  
  
4  |  
   $select s.* from {A2} as s left join {A3} as r on s.user1=r.user1 and s.user2=r.user2 where r.income>0.3  |  
  
Integration into application
SPL provides standard JDBC/ODBC drivers through which SPL can be conveniently integrated into an application or invoked by it. To invoke SPL code through JDBC, for instance:
…
Class.forName("com.esproc.jdbc.InternalDriver");
Connection conn = DriverManager.getConnection("jdbc:esproc:local://");
PrepareStatement st=con.prepareStatement("call splScript(?)"); // splScript is the name of SPL script file
st.setObject(1,"California");
st.execute();
ResultSet rs = st.getResultSet();
…
 
 
With all those functionalities, you’ll sure to be impressed by MongoDB’s strikingly boosted computing ability. Try your hand now.
SPL Official Website 👉 https://www.esproc.com
SPL Feedback and Help 👉 https://www.reddit.com/r/esProcSPL
SPL Learning Material 👉 https://c.esproc.com
SPL Source Code and Package 👉 https://github.com/SPLWare/esProc
Discord 👉 https://discord.gg/sxd59A8F2W
Youtube 👉 https://www.youtube.com/@esProc_SPL
            
        
Chinese version